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Abstract

We consider the Laplacian in a planar strip with a Dirichlet boundary condition
on the upper boundary and with a frequent alternation boundary condition on
the lower boundary. The alternation is introduced by the periodic partition
of the boundary into small segments on which Dirichlet and Neumann
conditions are imposed in turns. We show that under certain conditions
the homogenized operator is the Dirichlet Laplacian and prove the uniform
resolvent convergence. The spectrum of the perturbed operator consists of its
essential part only and has a band structure. We construct the leading terms of
the asymptotic expansions for the first band functions. We also construct the
complete asymptotic expansion for the bottom of the spectrum.

PACS numbers: 02.30.Jr, 02.30.Tb, 73.63.−b
Mathematics Subject Classification: 35P05, 35B27, 35J10

1. Introduction

The model of quantum waveguides with window(s) was studied in a series of papers by several
authors; see [Bo3, BGRS, DK, ESTV, EV, G2, HTWK, Bo6, BEG]. Such waveguides were
modeled by a pair of two planar strips or three-dimensional layers having a common boundary
and with window(s) openings of finite size in it. The usual operator is the Dirichlet Laplacian.
The main interest is the behavior of the spectrum of such an operator and its dependence on
the window. If the strips or layers are of the same width, then the problem reduces to the
Laplacian in one strip, and the window is modeled by segment(s) on the boundary where the
Dirichlet condition switches to the Neumann one. This model poses interesting mathematical
questions, and it is also of physical interest, since it has certain applications in nanophysical
devices and in modeling electromagnetic waveguides.

It was shown in the above-cited papers that the perturbation by a finite number of the
windows leaves the essential spectrum unchanged and gives rise to new discrete eigenvalues
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emerging below the threshold of the essential spectrum. This phenomenon was studied, and
the behavior of the emerging eigenvalues was described.

A completely different situation occurs, if one deals with an infinite number of the
windows located on the boundary. In this case, the perturbation is not localized and as a result
it changes an essential spectrum. Exactly this situation is considered in this paper. Namely, we
consider a planar strip with periodically located windows of the same length. The windows are
modeled by segments where the Dirichlet boundary condition is replaced by the Neumann one.
The main feature is that the sizes of these windows are small, and the distance between each
two neighboring windows is small, too. Such a perturbation is well known in homogenization
theory; see, for instance, [Bo4, FHY, C, Bo7, Bo5, BLP, DT]. In the case of the bounded
domains, it is known that under certain conditions on the alternation the homogenized operator
is the Dirichlet Laplacian, i.e., the homogenized boundary condition is the Dirichlet one. The
same phenomenon occurs in our problem. In other words, in the limit the perturbed operator
behaves as if there are no windows at all. Moreover, it happens even in the case when the size
of the windows is relatively larger than the remaining parts with the Dirichlet condition; see
condition (2.1) and theorem 2.1.

The above-mentioned convergence of the perturbed operator is in the uniform resolvent
sense. It also holds true, if we consider the resolvent not only as an operator in L2 but as those
from L2 into W 1

2 . We give an effective estimate for the rate of the convergence. Such kinds of
estimates for the operators with fast oscillating coefficients were obtained recently in the series
of papers [BS2, BS3, Bo2, Z1, Z2, ZPT, PT, P]. Although the perturbation by fast oscillating
coefficients is also typical for the homogenization theory and it has a number of features similar
to the perturbation by frequent alternation of the boundary condition, in our case the situation
is rather different from that in the cited papers. Namely, while considering the resolvent as
an operator from L2 into W 1

2 , they had to introduce a special corrector to get an estimate for
the rate of convergence. In our case, we do not need such a corrector, and the estimate for the
rate of the convergence can be obtained in a rather easy way exactly for the difference of the
resolvents. This is a specific feature of the problems of boundary homogenization and it was
known before in the homogenization of the fast oscillating boundary in the case of a bounded
domain; see [OSI, chapter III, section 4.1].

One more result of our paper concerns the behavior of the spectrum of the perturbed
operator. The spectrum has the band structure and we describe the asymptotic behavior for the
first band functions w.r.t. a small parameter. It implies that the length of the first band tends to
infinity w.r.t. a small parameter, and therefore all possible gaps ‘run’ to infinity. We prove that
the bottom of the spectrum corresponds to a periodic eigenfunction of the operator obtained
by Floquet decomposition of the periodic operator. On the basis of this fact we obtain the
complete asymptotic expansion of the bottom of the spectrum.

In conclusion, we describe briefly the contents of the paper. In the following section, we
formulate the problem and give the main results. In the third section, we prove the uniform
resolvent convergence of the perturbed operator. The fourth section is devoted to a similar
result but for the operator on a periodicity cell obtained in the Floquet decomposition. In the
last, fifth, section, we analyze the bottom of the spectrum of the perturbed operator.

2. Formulation of the problem and the main results

Let x = (x1, x2) be Cartesian coordinates in R
2, ε be a small positive parameter, η = η(ε) be

a function satisfying the estimate

0 < η(ε) <
π

2

2
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for all ε. We partition the real axis into two subsets,

γε := {x : |x1 − επm| < εη, m ∈ Z, x2 = 0}, �ε := Ox1\γ ε.

By �, �+, and �− we denote the strip {x : 0 < x2 < π} and its upper and lower boundaries,
respectively.

The main object of our study is the Laplacian in L2(�) subject to the Dirichlet boundary
condition on �+ ∪ γε and to the Neumann one on �ε. Rigorously we introduce it as the
self-adjoint operator in L2(�) associated with a sesquilinear form:

hε[u, v] := (∇u,∇v)L2(�) on W̊ 1
2 (�, �+ ∪ γε),

where W̊ 1
2 (Q, S) indicates the subset of the functions in W 1

2 (Q) having zero trace on the curve
S. We will employ the symbol Hε to denote this operator.

Remark 2.1. Although it is not one of the main issues of our paper, it is possible to describe
explicitly the structure of the functions in the domain of Hε. More precisely, it is possible to
describe their behavior at the end points of γε. We refer to lemma 3.1 for more details.

The main aim of the paper is to study the behavior of the resolvent and of the spectrum
of Hε as ε → +0. We introduce one more self-adjoint operator H0 which is the Dirichlet
Laplacian in L2(�). We define it as associated with a sesquilinear form:

h0[u, v] := (∇u,∇v)L2(�) on W̊ 1
2 (�, ∂�).

It is well known that the domain of this operator is W 2
2 (�) ∩ W̊ 1

2 (�, ∂�). In what follows the
symbol ‖ · ‖A→B indicates the norm of an operator from the space A to B.

Our first result says that under the condition

ε ln η(ε) → 0, ε → +0, (2.1)

the operator H0 is the homogenized one for Hε.

Theorem 2.1. Suppose (2.1). Then the estimate

‖(Hε − i)−1 − (H0 − i)−1‖L2(�)→W 1
2 (�) �

√
13 ε1/4| ln sin η(ε)|1/4 (2.2)

holds true.

As it follows from (2.1), the quantity ε| ln sin η(ε)| tends to zero as ε → +0. Even if η

tends to zero not very fast, say, as η ∼ εα , α > 0, and the lengths of the Dirichlet parts on �−
are, therefore, relatively small with respect to those of the Neumann parts, the homogenized
operator is still subject to the Dirichlet condition on �−. This fact was known in the case of
bounded domains; see, for instance, [FHY, C]. Moreover, if η → π

2 − 0 as ε → +0, then the
measures of Neumann parts of the boundary are relatively small w.r.t. to those of Dirichlet
parts. In this case, | ln sin η| → +0 and it improves the rate of convergence in (2.2).

The spectrum of H0 consists only of its essential component and coincides with the
semi-axis [1, +∞). As a corollary of theorem 2.1, we have

Theorem 2.2. The spectrum of Hε converges to that of H0. Namely, if λ �∈ [1, +∞), then
λ �∈ σ(Hε) for ε small enough. And if λ ∈ [1, +∞), then there exists λε ∈ σ(Hε) so that
λε → λ as ε → +0.

The operator Hε is a periodic one due to the periodicity of the sets γε and �ε, and its
spectrum has a band structure. Namely, let

�ε := {
x : |x1| < 1

2επ, 0 < x2 < π
}
, γ̊ε := ∂�ε ∩ γε,

�̊ε := ∂�ε ∩ �ε, �̊± := ∂�ε ∩ �±.

3
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By H(p)
ε (τ ) we denote the self-adjoint operator in L2(�ε) associated with the sesquilinear

form,

h̊(p)
ε [u, v] :=

((
i

∂

∂x1
− τ

ε

)
u,

(
i

∂

∂x1
− τ

ε

)
v

)
L2(�ε)

+

(
∂u

∂x2
,

∂u

∂x2

)
L2(�ε)

,

on W̊ 1
2,per(�ε, �̊+ ∪ γ̊ε), where τ ∈ [−1, 1). Here W̊ 1

2,per(�ε, �̊+ ∪ γ̊ε) is the subset of the

functions in W̊ 1
2 (�ε, �̊+∪ γ̊ε) satisfying periodic boundary conditions on the lateral boundaries

of �ε. The operator H(p)
ε (τ ) has a compact resolvent. To prove this, it is sufficient to reduce

the equation H(p)
ε (τ )u−λu = f to an operator equation of second kind in W̊ 1

2,per(�ε, �̊+ ∪ γ̊ε)

in a standard way; see, for instance, [L, chapter II, section 5] and [L, chapter II, section 5,
remark 5.1]. The mentioned operator equation involves a compact operator that follows
from the compact embedding of W̊ 1

2,per(�ε, �̊+ ∪ γ̊ε) in L2(�ε). The last fact implies the

compactness of the resolvent. Hence, the spectrum of H(p)
ε (τ ) consists of a countably many

discrete eigenvalues accumulating at infinity. We denote these eigenvalues by λn(τ, ε) and
arrange them in the non-descending order with the multiplicity taking into account

λ1(τ, ε) � λ2(τ, ε) � λ3(τ, ε) � · · · � λn(τ, ε) � · · · .
Let σ(·), σe(·) be the spectrum and the essential spectrum of an operator. Then

σ(Hε) = σe(Hε) =
∞⋃

n=1

{λn(τ, ε) : τ ∈ [−1, 1)} (2.3)

that will be shown in lemma 4.1.
The rest of the results is devoted to the behavior of λn(τ, ε) as ε → +0. First we establish

a uniform resolvent convergence for H(p)
ε (τ ).

By L we denote the subspace of the functions in L2(�ε) which are independent of x1, and
we decompose L2(�ε) as follows:

L2(�ε) = L ⊕ L⊥,

where L⊥ indicates the orthogonal complement to L in L2(�ε). In L, we introduce a self-
adjoint operator Q as associated with a sesquilinear form:

q[u, v] :=
(

du

dx2
,

dv

dx2

)
L2(0,π)

on W̊ 1
2 ((0, π), {0, π}).

In other words, Q is the operator − d2

dx2
2

in L2(0, π) subject to the Dirichlet boundary condition.

Theorem 2.3. Let |τ | < 1 − δ, where 0 < δ < 1 is a fixed constant and assume (2.1). Then
for sufficiently small ε the estimate∥∥∥∥∥

(
H(p)

ε (τ ) − τ 2

ε2

)−1

− Q−1 ⊕ 0

∥∥∥∥∥
L2(�ε)→L2(�ε)

� ε + 5ε1/2| ln sin η|1/2

δ1/2

holds true.

The resolvent
(
H(p)

ε (τ ) − τ 2

ε2

)−1
is well defined that will be shown in the proof of

lemma 4.2.
We should mention that the results of theorem 2.3 are close to those of theorem 1.2 in

[FS]. Moreover, the technique we employ to prove theorem 2.3 is similar to that proposed in
[FS]. The next theorem should be regarded as the corollary of theorem 2.3.
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Theorem 2.4. Let the hypothesis of theorem 2.3 holds. Then given any N there exists ε0 > 0
such that for ε < ε0, n � N the eigenvalues λn(τ, ε) satisfy the asymptotics

λn(τ, ε) = τ 2

ε2
+ n2 + Rn(τ, ε), ε → +0,

|Rn(τ, ε)| � n4

√
2ε + 8ε1/2| ln sin η|1/2

δ1/2
.

(2.4)

The last theorem implies that the length of the first N bands of the spectrum {λn(τ, ε) :
τ ∈ [−1, 1)}, n = 1, . . . , N, are of order at least O(ε−2). Moreover, they overlap. It means
that the first zone of the spectrum stretches as ε → +0 and in the limit it coincides with the
semi-axis [1, +∞). It implies that all possible gaps in the spectrum of Hε ‘run’ to infinity with
the speed at least O(ε−2). This is a natural situation for the homogenization problems; see,
for instance, [Bo1, B].

The bottom of the spectrum of Hε is given by infτ∈[−1,1) λ1(τ, ε), and by theorem 2.2 it
converges to one as ε → +0. The following theorem gives its complete asymptotic expansion
as ε → +0.

Theorem 2.5. For ε small enough, the first eigenvalue λ1(τ, ε) attains its infimum at τ = 0,
i.e.,

inf
τ∈[−1,1)

λ1(τ, ε) = λ1(0, ε). (2.5)

The asymptotics

λ1(0, ε) = 1 +
∞∑

j=1

εjμj (η), (2.6)

μ1(η) = 2

π
ln sin η(ε), μ2(η) = 3

π2
ln2 sin η(ε), (2.7)

holds true, and other μj are determined in a recurrent way by (5.11). Moreover,

μj(η) = Kj lnj η + O(lnj−3 η), η → +0, (2.8)

where Kj are some constants.

We observe that due to (2.8) the coefficients μj has increasing logarithmic singularities
as η → +0. At the same time, the terms of the series (2.6) behave as O(εi lni η), if η → +0 as
ε → +0, and in view of condition (2.1) the series (2.6) remains an asymptotic one. We note
that this phenomenon for the problems in the bounded domains with the frequent alternation
of the boundary conditions was described first in [Bo4, Bo5].

Theorem 2.4 does not describe all the eigenvalues of the operator Hε. Namely, we
conjecture that there exists a two-parametric family of the eigenvalues of Hε behaving as

λn,m(τ, ε) ∼ (τ + 2m)2

ε2
+ n2 + · · · ,m ∈ Z, n ∈ N.

The reason for such conjecture is that the right-hand side of this relation is, in fact, the
eigenvalues of the operator:(

i
∂

∂x1
− τ

ε

)2

− ∂2

∂x2
2

in L2(�ε) subject to the Dirichlet boundary condition on �̊+ ∪ �̊− and to the periodic boundary
condition on the lateral boundaries of �ε. Such an operator appears, if one treatsH0 as periodic

5
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w.r.t. x1 and makes the Floquet decomposition. Moreover, it is natural to expect that the same
formulae are valid not for |τ | < 1−δ, as in theorem 2.4, but for all τ ∈ [−1, 1). Such formulae
would allow to answer one more interesting question in the presence or absence of the gaps
in the spectrum of Hε. As we said above, if they exist, such gaps ‘run’ to infinity as ε → +0.
Generally speaking, the lengths of the gaps could be small, finite or infinite as ε → +0. At the
same time, in [Bo1] it was shown that the spectrum of a periodic one-dimensional Schrödinger,

− d2

dx2
+ a

(x

ε

)
in L2(R),

can contains only the gaps of finite or small lengths. So, it allows us to conjecture the same
for Hε provided the gaps exist.

3. Convergence of the resolvent of Hε

This section is devoted to the proof of theorems 2.1, 2.2.
Let χ = χ(t) ∈ C∞(R) be a cut-off function with values in [0, 1] equalling one as t < 1

and vanishing as t > 2. By D(·) we denote the domain of an operator.
We indicate by

(
r

(m)
± , θ

(m)
±

)
the polar coordinates centered at (επm ± εη, 0), m ∈ Z, so

that θ
(m)
± = 0 corresponds to the points of γε.

Lemma 3.1. Each function u ∈ D(Hε) can be represented as

u(x) = 0
u (x) +

1
u (x),

0
u(x) =

∑
m∈Z

α
(m)
±

√
r

(m)
± χ

(
3r

(m)
±

εδε

)
sin

θ
(m)
±
2

, (3.1)

δε := min
{
η(ε),

π

2
− η(ε)

}
,

where α
(m)
± are some constants, and

1
u∈ W 2

2 (�) ∩ W̊ 1
2 (�, �+ ∪ γε). The estimate∑

m∈Z

(|α(m)
+ |2 + |α(m)

− |2) + ‖ 1
u ‖2

W 2
2 (�)

� C‖Hεu‖2
L2(�) (3.2)

holds true, where the constant C is independent of u.

Proof. The domain of Hε consists of the generalized solutions u ∈ W 1
2 (�) to the problem:

−�u = f in �, u = 0 on �+ ∪ γε,
∂u

∂x2
= 0 on x ∈ �ε.

It follows that

hε[u, u] = (f, u). (3.3)

Since u = 0 on �+, the first eigenvalue of − d2

dx2
2

on the cross section of � is at least 1/4. This
is why ∥∥∥∥ ∂u

∂x2
(x1, ·)

∥∥∥∥2

L2(0,π)

� 1

4
‖u(x1, ·)‖2

L2(0,π). (3.4)

Hence,

hε[u, u] �
∥∥∥∥ ∂u

∂x2

∥∥∥∥2

L2(�ε)

� 1

4
‖u‖2

L2(�ε)
, Hε � 1/4,

6
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and it follows from (3.3) that

‖u‖L2(�) � 4‖f ‖L2(�), ‖∇u‖L2(�) � 2‖f ‖L2(�).

Employing these inequalities and proceeding as in the proof of theorem 2.1 in [Bo3], one can
prove easily the representation (3.1), and the estimates

‖ 1
u ‖W 2

2 (�) � C‖Hεu‖L2(�),∣∣α(m)
±

∣∣ � C
(‖Hεu‖

L2({x∈�: r
(m)
± <εδε}) + ‖u‖

W 1
2 ({x∈�: r

(m)
± <εδε})

)
,

where the constant C is independent of u and m. Summing up the last inequalities, we arrive
at (3.2). �

We introduce an auxiliary function,

X = X(ξ, η) = Re ln(sin z +
√

sin2 z − sin2 η) − ξ2, x

ξ = (ξ1, ξ2) =
(x1

ε
,
x2

ε

)
, z = ξ1 + iξ2,

(3.5)

where the branches of the logarithm and the root are specified by the requirements ln 1 = 0,√
1 = 1. We first define this function for ξ2 > 0, ξ1 �= πm, m ∈ Z, and then we extend it by

the continuity to {ξ : ξ2 � 0}. This function was introduced in [G1] and it was shown that it
is harmonic as ξ2 > 0, even and π -periodic w.r.t. ξ1, decays exponentially as ξ2 → +∞, and
satisfies the boundary conditions

X = ln sin η on γ (η),
∂X

∂ξ2
= −1 on �(η), (3.6)

where

γ (η) := {ξ : |ξ1 − πm| < η, m ∈ Z, ξ2 = 0}, �(η) := Oξ1\γ (η). (3.7)

The function X is continuous in {ξ : ξ2 � 0} and satisfies the estimate

|X| � | ln sin η| (3.8)

uniformly in ξ . Indeed, since it is harmonic and decays exponentially as ξ2 → +∞, it achieves
its maximum on Oξ1. Employing this fact and the explicit formula for X, one can easily check
the estimate (3.8).

Lemma 3.2. Given any u ∈ D(Hε), the function uX
( ·

ε
, η

)
belongs to W̊ 1

2 (�, �+ ∪ γε).

Proof. The boundary conditions and the belongings uX,X∇u ∈ L2(�) are due to the
belonging u ∈ W̊ 1

2 (�, �+ ∪ γε) and the estimate (3.8). It remains to check that u∇X ∈ L2(�).

We employ the representation (3.1) for u and due to (3.2) we obtain
0
u ∇X ∈ L2(�). To prove

the belonging
1
u ∇X ∈ L2(�), we integrate by parts taking into account the properties of X:∫

�

∇X · | 1
u |2∇X dx = −

∫
�−

X| 1
u |2 ∂X

∂x2
dx1 −

∫
�

X∇X · ∇| 1
u |2 dx

= 1

ε

∫
�ε

X| 1
u |2 dx − 1

2

∫
�

∇X2 · ∇| 1
u |2 dx

= 1

ε

∫
�ε

X| 1
u |2 dx +

1

2

∫
�−

X2 ∂| 1
u |2

∂x2
dx1 +

1

2

∫
�

X2�| 1
u |2 dx

= 1

ε

∫
�ε

X| 1
u |2 dx + Re

∫
�ε

X2 1
u

∂
1
u

∂x2
dx1 +

1

2

∫
�

X2�| 1
u |2 dx,

7
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which by the estimate (3.8) and the belongings,

1
u∈ W 2

2 (�),
1
u,

∂
1
u

∂x2
∈ L2(�ε),

implies
1
u ∇X ∈ L2(�). �

Proof of theorem 2.1. Denote uε := (Hε − i)−1f for f ∈ L2(�). By the definition of Hε,
the function uε satisfies the identity,

(∇uε,∇φ)L2(�) + i(uε, φ)L2(�) = (f, φ)L2(�), (3.9)

for any φ ∈ W̊ 1
2 (�, �+ ∪ γε). For φ = uε, we have

‖∇uε‖2
L2(�) + i‖uε‖2

L2(�) = (f, uε)L2(�). (3.10)

We take the imaginary part of the last identity and obtain

‖uε‖2
L2(�) = Im(f, uε)L2(�) � ‖f ‖L2(�)‖uε‖L2(�),

‖uε‖L2(�) � ‖f ‖L2(�). (3.11)

It follows from (3.10) and (3.11) that

‖∇uε‖2
L2(�) = Re(f, uε)L2(�) � ‖f ‖2

L2(�). (3.12)

In the same way, for u0 := (H0 − i)−1f we have the inequalities

‖u0‖L2(�) � ‖f ‖L2(�), ‖∇u0‖L2(�) � ‖f ‖L2(�). (3.13)

By lemma 3.2 the function φ = uεX belongs to W̊ 1
2 (�, �+ ∪ γε). We substitute it into (3.9):

(∇uε,X∇uε)L2(�) + (∇uε, uε∇X)L2(�) + i(uε,Xuε)L2(�) = (f,Xuε)L2(�). (3.14)

We integrate by parts and employ the properties of X and (3.6):

Re(∇uε, uε∇X)L2(�) = 1

2

∫
�

∇X · (uε∇uε + uε∇uε) dx

= 1

2

∫
�

∇X · ∇|uε|2 dx = −1

2

∫
�−

|uε|2 ∂X

∂x2
dx1 −

∫
�

|uε|2�X dx

= 1

2ε

∫
�ε

|uε|2 dx1.

Now taking the real part of (3.14), we arrive at the identity,

(∇uε,X∇uε)L2(�) +
1

2ε
‖uε‖2

L2(�ε)
= Re(f,Xuε)L2(�).

By (3.8), (3.11), (3.12) it yields

1

2ε
‖uε‖2

L2(�ε)
� Re(f,Xuε)L2(�) + |(∇uε,X∇uε)L2(�)| � 2| ln sin η|‖f ‖2

L2(�),

‖uε‖L2(�−) = ‖uε‖L2(�ε) � 2
√

ε| ln sin η(ε)|‖f ‖L2(�).

(3.15)

Denote vε := uε − u0. This function belongs to W̊ 1
2 (�, �+ ∪ γε) and is a generalized

solution to the problem:

−�vε + ivε = 0 in �,

vε = 0 on �+ ∪ γε,
∂vε

∂x2
= −∂u0

∂x2
on �ε.

8
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We multiply the equation by vε and integrate by parts:

−
∫

�ε

vε

∂u0

∂x2
dx1 + ‖∇vε‖2

L2(�) + i‖vε‖2
L2(�) = 0, (3.16)

‖∇vε‖2
L2(�) = Re

∫
�ε

vε

∂u0

∂x2
dx1 = Re

∫
�ε

uε

∂u0

∂x2
dx1

� ‖uε‖L2(�ε)

∥∥∥∥∂u0

∂x2

∥∥∥∥
L2(�−)

,

‖vε‖2
L2(�) � Im

∫
�ε

uε

∂u0

∂x2
dx1 � ‖uε‖L2(�ε)

∥∥∥∥∂u0

∂x2

∥∥∥∥
L2(�−)

. (3.17)

Let us estimate
∥∥ ∂u0

∂x2

∥∥
L2(�−)

. For a.e. x1 ∈ R we have

∂u0

∂x2
(x1, 0) = 1

π

∫ π

0

∂

∂x2
(x2 − π)

∂u0

∂x2
dx2.

By the Cauchy–Schwarz inequality we derive∣∣∣∣∂u0

∂x2
(x1, 0)

∣∣∣∣2

� 2

π2

( ∫ π

0
(x2 − π)2 dx2

∫ π

0

∣∣∣∣∂2u0

∂x2
2

(x)

∣∣∣∣2

dx2 +
∫ π

0
dx2

∫ π

0

∣∣∣∣∂u0

∂x2
(x)

∣∣∣∣2

dx2

)

= 2

π

(
π2

3

∥∥∥∥∂2u0

∂x2
2

(x1, 0)

∥∥∥∥2

L2(0,π)

+

∥∥∥∥∂u0

∂x2
(x1, 0)

∥∥∥∥2

L2(0,π)

)
. (3.18)

Proceeding as in the proof of lemma 7.1 in [LU, chapter 3, section 7], we check that∥∥∥∥∂2u0

∂x2
1

∥∥∥∥2

L2(�)

+

∥∥∥∥∂2u0

∂x2
2

∥∥∥∥2

L2(�)

+ 2

∥∥∥∥ ∂2u0

∂x1∂x2

∥∥∥∥2

L2(�)

= ‖f + iu0‖2
L2(�),

and by (3.13) it implies∥∥∥∥∂2u0

∂x2
2

∥∥∥∥
L2(�)

� ‖f + iu0‖L2(�) � 2‖f ‖L2(�).

This estimate and (3.18) yield∥∥∥∥∂u0

∂x2

∥∥∥∥2

L2(�−)

� 2π

3

∥∥∥∥∂2u0

∂x2
2

∥∥∥∥2

L2(�)

+
2

π

∥∥∥∥∂u0

∂x2

∥∥∥∥2

L2(�)

� 8π2 + 6

3π
‖f ‖2

L2(�).

Substituting this estimate and (3.15) into (3.17), we get

‖vε‖2
W 1

2 (�)
� 4

√
8π2 + 6

3π

√
ε| ln sin η(ε)|‖f ‖2

L2(�) �
√

13ε| ln sin η(ε)|‖f ‖2
L2(�)

that completes the proof. �

Theorem 2.2 follows directly from theorem 2.1 and theorems VIII.23, VIII.24 in [RS1,
chapter VIII, section 7].

9
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4. Convergence of the resolvent of H(p)
ε (τ )

In this section, we prove theorems 2.3 and 2.4. We begin with auxiliary lemmas.

Lemma 4.1. The identity (2.3) holds true.

Proof. Given λn(τ, ε), let ψn(x, τ, ε) be the associated eigenfunction. Employing the
function e

iτx1
ε ψn(x, τ, ε), one can construct easily a singular sequence for Hε at λ = λn(τ, ε)

and by the Weyl criterion we, therefore, obtain
∞⋃

n=1

{λn(τ, ε) : τ ∈ [−1, 1)} ⊆ σe(Hε).

Let

λ �∈
∞⋃

n=1

{λn(τ, ε) : τ ∈ [−1, 1)}. (4.1)

It is sufficient to prove that λ �∈ σ(Hε). It is equivalent to the existence of the resolvent
(Hε − λ)−1. Let us prove the latter.

We introduce the Gelfand transformation Fε w.r.t. x1:

(Fεf )(x, τ ) = e− iτx1
ε (Gεf )(x, τ ), x ∈ �ε,

(Gεf )(x, τ ) :=
∑

m∈επZ

f (x1 − m, x2) e
iτm
ε , x ∈ �ε,

(
F−1

ε f̂
)
(x) := 1

2

∫ 2

0
f̂ (x, τ ) e

iτx1
ε dτ, x ∈ �,

where it is assumed in the last formula that the functions defined on �ε are extended επ

periodically w.r.t. x1.
Let X be a Hilbert space, and define

L2((−1, 1),X) :=
∫ ⊕

(−1,1)

X.

Repeating the proof of theorem 2.2.5 in [K, chapter 2, section 2.2], one can prove easily that
Gε : L2(�) → L2((−1, 1), L2(�ε)) is an isomorphism, and

‖Gεf ‖2
L2((−1,1),L2(�ε))

= 2‖f ‖2
L2(�), (Gεf,Gεg)L2((−1,1),L2(�ε)) = 2(f, g)L2(�).

(4.2)

Similarly, Gε : W̊ 1
2 (�, �+ ∪ γε) → L2

(
(−1, 1), W̊ 1

2,per(�ε, �̊+ ∪ γ̊ε)
)

is an isomorphism, and

‖Gεf ‖2
L2((−1,1),W̊ 1

2,per(�ε,�̊+∪γ̊ε))
= 2‖f ‖2

W̊ 1
2 (�,�+∪γε)

,

(Gεf,Gεg)L2((−1,1),W̊ 1
2,per(�ε,�̊+∪γ̊ε))

= 2(f, g)W̊ 1
2 (�,�+∪γε)

.
(4.3)

Given f ∈ L2(�), let f̂ ε(x, τ ) := (Fεf )(x, τ ). Due to (4.1), the operator
(
H(p)

ε (τ )−λ
)−1

is invertible for each τ ∈ [−1, 1). The function ûε = ûε(x, τ ),

ûε := (
H(p)

ε (τ ) − λ
)−1

f̂ ∈ W̊ 1
2,per(�ε, �̊+ ∪ γ̊ε),

satisfies the uniform in τ estimate

‖̂uε‖W 1
2 (�ε)

� C‖f̂ ‖L2(�ε).

10
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Hence, it belongs to L2((−1, 1), W̊ 1
2,per(�ε, �̊+ ∪ γ̊ε)), and by (4.3) the function

uε(x) := (
F−1

ε ûε

)
(x) = 1

2

∫ 2

0
ûε(x, τ ) e

iτx1
ε dτ

belongs to W̊ 1
2 (�, �+ ∪ γε).

Given any ϕ ∈ W̊ 1
2 (�, �+ ∪ γε), denote ϕ̂ := Fεϕ. The identities (4.2), (4.3) and the

definition of ûε yield

hε[u, ϕ] − λ(u, ϕ)L2(�) = 1

2

((
i

∂

∂x1
− τ

ε

)
ûε,

(
i

∂

∂x1
− τ

ε

)
ϕ̂ε

)
L2((−1,1),L2(�ε))

+
1

2

(
∂ûε

∂x2
,
∂ϕ̂ε

∂x2

)
L2((−1,1),L2(�ε))

− λ

2
(̂uε, ϕ̂ε)L2((−1,1),L2(�ε))

= 1

2
(f̂ ε, ϕ̂ε)L2((−1,1),L2(�ε)) = (f, ϕ)L2(�).

Thus, u = (Hε − λ)−1f and the operator Hε − λ is boundedly invertible. �

Lemma 4.2. Let |τ | < 1 − δ, where 0 < δ < 1 is a fixed constant, and

uε =
(
H(p)

ε (τ ) − τ 2

ε2

)−1

f.

Then

‖uε‖L2(�ε) � 4‖f ‖L2(�ε), (4.4)∥∥∥∥∂uε

∂x2

∥∥∥∥
L2(�ε)

� 2‖f ‖L2(�ε), (4.5)∥∥∥∥∂uε

∂x1

∥∥∥∥
L2(�ε)

� 2

δ1/2
‖f ‖L2(�ε). (4.6)

If, in addition, f ∈ L⊥, then

‖uε‖L2(�ε) � ε

δ1/2
‖f ‖L2(�ε), ‖∇uε‖L2(�ε) � ε

2δ
‖f ‖L2(�ε). (4.7)

Proof. Let us prove first that the resolvent
(
H(p)

ε (τ ) − τ 2

ε2

)−1
is well defined. The quadratic

form corresponding to H(p)
ε (τ ) − τ 2

ε2 reads as follows:((
H(p)

ε (τ ) − τ 2

ε2

)
u, u

)
L2(�ε)

=
∥∥∥∥(

i
∂

∂x1
− τ

ε

)
u

∥∥∥∥2

L2(�ε)

− τ 2

ε2
‖u‖2

L2(�ε)
+

∥∥∥∥ ∂u

∂x2

∥∥∥∥2

L2(�ε)

(4.8)

on W̊ 1
2,per(�ε, �̊+ ∪ γ̊ε). We can expand u(·, x2) in terms of the basis

{
e± 2imx1

ε

}
, m = 0, 1, 2, . . ..

Employing this expansion, one can make sure that∥∥∥∥(
i

∂

∂x1
− τ

ε

)
u

∥∥∥∥2

L2(�ε)

− τ 2

ε2
‖u‖2

L2(�ε)
=

∥∥∥∥(
i

∂

∂x1
− τ

ε

)
u⊥

∥∥∥∥2

L2(�ε)

− τ 2

ε2
‖u⊥‖2

L2(�ε)

� 4(1 − |τ |)
ε2

‖u⊥‖2
L2(�ε)

� 4δ

ε2
‖u⊥‖2

L2(�ε)
, (4.9)∥∥∥∥(

i
∂

∂x1
− τ

ε

)
u

∥∥∥∥2

L2(�ε)

− τ 2

ε2
‖u‖2

L2(�ε)
� δ

∥∥∥∥ ∂u

∂x1

∥∥∥∥2

L2(�ε)

, (4.10)

11
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where u⊥ is the projection of u on L⊥. It follows from (3.4) that∥∥∥∥ ∂u

∂x2

∥∥∥∥2

L2(�ε)

� 1

4
‖u‖2

L2(�ε)
(4.11)

for u ∈ W̊ 1
2 (�ε, �̊+). The estimates (4.11) and (4.9) imply that

H(p)
ε (τ ) − τ 2

ε2
� 1

4
,

and therefore the inverse of this operator is well defined and satisfies the estimate (4.4). In
view of (4.8), we thus have∥∥∥∥(

i
∂

∂x1
− τ

ε

)
uε

∥∥∥∥2

L2(�ε)

− τ 2

ε2
‖uε‖2

L2(�ε)
+

∥∥∥∥∂uε

∂x2

∥∥∥∥2

L2(�ε)

= (f, uε)L2(�ε). (4.12)

This identity, (4.4) and (4.10) imply∥∥∥∥∂uε

∂x2

∥∥∥∥2

L2(�ε)

� 4‖f ‖2
L2(�ε)

, δ

∥∥∥∥∂uε

∂x1

∥∥∥∥2

L2(�ε)

� 4‖f ‖2
L2(�ε)

that proves (4.5) and (4.6).
Assume that f ∈ L⊥ and let u⊥

ε be the projection of uε on L⊥. Then it follows from
(4.12) and (4.9) that∥∥∥∥(

i
∂

∂x1
− τ

ε

)
u⊥

ε

∥∥∥∥2

L2(�ε)

− τ 2

ε2

∥∥u⊥
ε

∥∥2
L2(�ε)

+

∥∥∥∥∂uε

∂x2

∥∥∥∥2

L2(�ε)

= (
f, u⊥

ε

)
L2(�ε)

.

We substitute the estimate (4.9) into the last identity:

4δ

ε2

∥∥u⊥
ε

∥∥2
L2(�ε)

� ‖f ‖L2(�ε)

∥∥u⊥
ε

∥∥
L2(�ε)

,∥∥u⊥
ε

∥∥
L2(�ε)

� ε2

4δ
‖f ‖L2(�ε),

|(f, uε)L2(�ε)| = ∣∣(f, u⊥
ε

)
L2(�ε)

∣∣ � ε2

4δ
‖f ‖2

L2(�ε)
.

The last estimate, (4.10), (4.11), (4.12) yield

‖uε‖2
L2(�ε)

� ε2

δ
‖f ‖2

L2(�ε)
, ‖∇uε‖2

L2(�ε)
� ε2

4δ2
‖f ‖2

L2(�ε)
,

that completes the proof. �

Lemma 4.3. Let F = F(x2) ∈ L2(0, π) and U := Q−1F . Then

|U ′(0)| �
√

π

3
‖F‖L2(0,π).

Proof. It is easy to find the function U explicitly:

U(x2) = −1

2

∫ π

0

(
|x2 − t | − x2 − t +

2x2t

π

)
F(t) dt.

Hence,

U ′(0) =
∫ π

0

(
1 − t

π

)
F(t) dt,

12
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and by the Cauchy–Schwarz inequality, we obtain

|U ′(0)| �
(∫ π

0

(
1 − t

π

)2

dt

)1/2

‖F‖L2(0,π) =
√

π

3
‖F‖L2(0,π).

�

Lemma 4.4. Each function u ∈ D
(
H(p)

ε (τ )
)

can be represented as

u(x) = 0
u (x) +

1
u (x),

0
u(x) = α−χ

(
3r

(0)
−

εδε

)√
r

(0)
− sin

θ
(0)
−
2

+ α+χ

(
3r

(0)
+

εδε

) √
r

(0)
+ sin

θ
(0)
+

2
,

(4.13)

where
1
u(x) ∈ W 2

2 (�ε) vanishes on G̊+ ∪ γ̊ε and satisfies the periodic boundary condition on
the lateral boundaries of �ε. Here α± are some constants, and δε is the same as in lemma 3.1.

The proof is completely analogous to that of lemma 3.1.

Proof of theorem 2.3. Given f ∈ L2(�ε), we decompose it as f = Fε + f ⊥
ε , Fε ∈ L,

f ⊥
ε ∈ L⊥,

‖Fε‖2
L2(�ε)

+
∥∥f ⊥

ε

∥∥2
L2(�ε)

= ‖f ‖2
L2(�ε)

. (4.14)

Then (
H(p)

ε (τ ) − τ 2

ε2

)−1

f =
(
H(p)

ε (τ ) − τ 2

ε2

)−1

Fε +

(
H(p)

ε (τ ) − τ 2

ε2

)−1

f ⊥
ε ,

and by (4.7), (4.8), (4.14) we obtain immediately∥∥∥∥∥
(
H(p)

ε (τ ) − τ 2

ε2

)−1

f ⊥
ε

∥∥∥∥∥
L2(�ε)

� ε

δ1/2

∥∥f ⊥
ε

∥∥
L2(�ε)

� ε

δ1/2
‖f ‖L2(�ε). (4.15)

It remains to construct an appropriate approximation for

uε :=
(
H(p)

ε (τ ) − τ 2

ε2

)−1

Fε.

It is clear that (Q−1 ⊕ 0)f = Q−1Fε. We denote this function by Uε. Let χ be a cut-off
function defined before lemma 3.1. We introduce one more function:

ûε(x) := Uε(x2) + εU ′
ε(0)

(
X

(x

ε
, η(ε)

)
− ln sin η(ε)

)
χ(x2).

It is straightforward to check that ûε satisfies the periodic boundary condition on the lateral
surfaces of �ε, vanishes on �̊+ ∪ γ̊ε, and obeys the Neumann condition on �̊ε. It also
belongs to the domain of the operator H(p)

ε (τ ) since the function χ(x2)X
(

x
ε
, η(ε)

)
satisfies

the representation (4.13).
Employing the properties of X, we see that(

H(p)
ε (τ ) − τ 2

ε2

)
ûε = Fε − U ′

ε(0)

(
2iτχ

∂X

∂x1
+ εχ ′′(X − ln sin η) + 2εχ ′ ∂X

∂x2

)
,

and for ũε := uε − ûε we have

ũε = U ′
ε(0)

(
H(p)

ε (τ ) − τ 2

ε2

)−1

gε − εU ′
ε(0) ln sin η

(
H(p)

ε (τ ) − τ 2

ε2

)−1

χ ′′

= ũ(1)
ε + ũ(2)

ε ,

gε = 2iτχ
∂X

∂x1
+ ε

(
χ ′′X + 2χ ′ ∂X

∂x2

)
.

13
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It follows from [Bo5, lemma 3.7] that∫ π/2

−π/2
X(ξ, η) dξ1 = 0 for ξ2 > 0.

Hence, ∫ επ/2

−επ/2
X

(x

ε
, η(ε)

)
dx1 = 0 for 0 < x2 < π,

and g ∈ L⊥. By (4.7) it implies that∥∥̃u(1)
ε

∥∥
L2(�ε)

� ε

δ1/2
|U ′

ε(0)|‖g‖L2(�ε). (4.16)

The identity

‖∇ξX‖2
L2(�) = π | ln sin η|, � := {ξ : |ξ1| < π/2, ξ2 > 0},

was proven in [Bo5, lemma 3.8]. Together with (3.8) and (2.1) it yields

‖g‖L2(�ε) � 2

∥∥∥∥ ∂X

∂x1

∥∥∥∥
L2(�ε)

+ ε| ln sin η|‖χ ′′‖L2(�ε) + 2εC

∥∥∥∥ ∂X

∂x2

∥∥∥∥
L2(�ε)

� 2
√

2‖∇xX‖L2(�ε) + Cε3/2| ln sin η|
� 2

√
2‖∇ξX‖L2(�) + Cε3/2| ln sin η|

= 2
√

2π | ln sin η|1/2 + Cε3/2| ln sin η| � 6| ln sin η|1/2, (4.17)

if ε is small enough. Here the symbol C indicates inessential constants independent of ε and
η. Since

Fε(x2) = (επ)−1
∫ επ

2

− επ
2

f (x) dx1,

by the Cauchy–Schwarz inequality we have

‖Fε‖L2(0,π) � (επ)−1/2‖f ‖L2(�ε).

This estimate and lemma 4.3 yield

|U ′
ε(0)| � ε−1/2

√
3

‖f ‖L2(�ε). (4.18)

It follows from (4.16) and (4.17), and the last estimate that∥∥̃u(1)
ε

∥∥
L2(�ε)

� 2
√

3

δ1/2
ε1/2| ln sin η|1/2‖f ‖L2(�ε).

Since ‖χ ′′‖L2(�ε) = √
επ‖χ ′′‖L2(0,π), by (4.4) and (4.18) we derive∥∥̃u(2)

ε

∥∥
L2(�ε)

� Cε| ln sin η|‖f ‖L2(�ε),

where C is a constant independent of ε and η. Thus,

‖̃uε‖L2(�ε) � 4ε1/2

δ1/2
| ln sin η|1/2‖f ‖L2(�ε), (4.19)

if ε is small enough. It follows from (4.18) and (3.8) that

‖εU ′
ε(0)(X − ln sin η)χ‖L2(�ε) � 2επ√

3
| ln sin η|‖f ‖L2(�ε).

14
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Hence, by (4.15), (4.19), (2.1) we obtain∥∥∥∥ (
H(p)

ε (τ ) − τ 2

ε2

)−1

f − (Q−1 ⊕ 0)f

∥∥∥∥
L2(�ε)

�
(

ε

δ1/2
+

4

δ1/2
ε1/2| ln sin η|1/2 +

2π√
3
ε| ln sin η|

)
‖f ‖L2(�ε)

� ε + 5ε1/2| ln sin η|1/2

δ1/2
‖f ‖L2(�ε),

if ε is small enough. �

Proof of theorem 2.4. By the standard bracketing arguments (see, for instance, [RS2,
chapter XIII, section 15, proposition 4]) we see that the eigenvalues of H(p)

ε − τ 2

ε2 are estimated
from above by those of the same operator in the case η = π/2. In other words, we increase
the eigenvalues of H(p)

ε − τ 2

ε2 , if we replace the Neumann condition on �̊ε by the Dirichlet one.
In the latter case, given any N there exists ε0 > 0 so that for ε < ε0 the first N eigenvalues are
n2 with the eigenfunctions sin nx2. Hence,

0 � λn(τ, ε) − τ 2

ε2
� n2, n � N, ε < ε0. (4.20)

By [OSI, chapter III, section 1, theorem 1.4] and by theorem 2.3 we have∣∣∣∣∣ 1

λn(τ, ε) − τ 2

ε2

− 1

n2

∣∣∣∣∣ � ε + 5ε1/2| ln sin η|1/2

δ1/2
.

The statement of the theorem follows from the two previous estimates. �

5. Bottom of the spectrum

In this section, we prove theorem 2.5. First we prove that the eigenvalue λ1(τ, ε) attains its
minimum at τ = 0.

In the same way as in the proof of theorem 2.4, by the bracketing arguments we see
that the eigenvalues of H(p)

ε (τ ) are estimated from below by those of the same operator with
η = 0, i.e., when we replace the Dirichlet condition on �̊ε by the Neumann one. The lowest
eigenvalue of the latter operator is 1

4 + τ 2

ε2 and therefore

λ1(τ, ε) � 1

4
+

τ 2

ε2
, τ ∈ [−1, 1),

λ1(τ, ε) � 5

4
, |τ | � ε.

(5.1)

Since by (2.4) the eigenvalue λ1(0, ε) behaves as

λ1(0, ε) = 1 + o(1), ε → +0, (5.2)

in view of (5.1) we conclude that λ1(τ, ε) � λ1(0, ε) as |τ | � ε for sufficiently small ε, and
thus

inf
τ∈[−1,1)

λ1(τ, ε) = inf
τ∈[−ε,ε]

λ1(τ, ε).

Consider the case |τ | � ε. For such τ , the eigenvalue λ1(τ, ε) is simple as it follows from
(2.4). Let ψε = ψε(x) be the real-valued eigenfunction associated with λ1(0, ε) normalized
in L2(�ε).
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Lemma 5.1. The convergence∥∥∥∥∂ψε

∂x1

∥∥∥∥
L2(�ε)

→ 0, ε → +0,

holds true.

Proof. By the definition, the function ψε satisfies the identity,

‖∇ψε‖2
L2(�ε)

= λ1(0, ε). (5.3)

Let ψ⊥
ε be the projection of ψε on L⊥, and ψ̊ε := ψε − ψ⊥

ε ∈ L, ψ̊ε = ψ̊ε(x2). By the
inequality (4.9) with τ = 0, we obtain∥∥∥∥∂ψε

∂x1

∥∥∥∥2

L2(�ε)

� 4ε−2
∥∥ψ⊥

ε

∥∥2
L2(�ε)

.

Together with (5.2) and (5.3) it yields∥∥ψ⊥
ε

∥∥
L2(�ε)

= O(ε), ε → +0.

Since

‖ψ̊ε‖2
L2(�ε)

+ ‖ψ⊥‖2
L2(�ε)

= ‖ψε‖2
L2(�ε)

= 1,

it follows that

‖ψ̊ε‖L2(�ε) = 1 + O(ε), ε → +0. (5.4)

We integrate the equation

−�ψε = λ1(0, ε)ψε

w.r.t. x1 ∈ (−επ/2, επ/2) for x2 ∈ (0, π):

−d2ψ̊ε

dx2
2

= λ1(0, ε)ψ̊ε, x2 ∈ (0, π), ψ̊ε(π) = 0.

Hence,

ψ̊ε(x2) = Cε(επ)−1/2 sin
√

λ1(0, ε)(π − x2),

‖ψ̊ε‖2
L2(�ε)

= C2
ε

2

(
π − sin 2

√
λ1(0, ε)π

2
√

λ1(0, ε)

)
,

where Cε is a constant. If follows from (5.4) and (5.2) that

C2
ε = 2

π
+ o(1), ε → +0.

By direct calculations we check that∥∥∥∥dψ̊ε

dx2

∥∥∥∥2

L2(�ε)

= C2
ε λ1(0, ε)

2

(
π +

sin 2
√

λ1(0, ε)π

2
√

λ1(0, ε)

)
= λ1(0, ε)(1 + o(1)), ε → +0.

We substitute this identity and the asymptotics (5.2) into (5.3):∥∥∇ψ⊥
ε

∥∥2
L2(�ε)

= o(1),

∥∥∥∥∂ψε

∂x1

∥∥∥∥2

L2(�ε)

=
∥∥∥∥∂ψ⊥

ε

∂x1

∥∥∥∥2

L2(�ε)

= o(1), ε → +0.

�

Applying the bracketing arguments in the same way as above, we can estimate the
eigenvalues λ1(τ, ε) and λ2(τ, ε) as

1

4
� λ1(τ, ε) − τ 2

ε2
� 1,

9

4
� λ2(τ, ε) − τ 2

ε2
� 4,
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for ε small enough, |τ | � ε. One can make sure easily that(
H(p)

ε (τ ) − τ 2

ε2

)
ψε = λ1(0, ε)ψε − 2iτ

ε

∂ψε

∂x1
,((

H(p)
ε (τ ) − τ 2

ε2

)
ψε,ψε

)
L2(�ε)

= λ1(0, ε),∥∥∥∥(
H(p)

ε (τ ) − τ 2

ε2

)
ψε

∥∥∥∥2

L2(�ε)

= λ2
1(0, ε) +

4τ 2

ε2

∥∥∥∥∂ψε

∂x1

∥∥∥∥2

L2(�ε)

.

Employing these formulae, we apply the Temple inequality (see [D, chapter 4, section 4.6,
theorem 4.6.3]) to the operator H(p)

ε (τ ) − τ 2

ε2 :

λ1(τ, ε) − τ 2

ε2
�

9
4

((
H(p)

ε (τ ) − τ 2

ε2

)
ψε,ψε

)
L2(�ε)

−
∥∥∥(

H(p)
ε (τ ) − τ 2

ε2

)
ψε

∥∥∥2

L2(�ε)

9
4 −

((
H(p)

ε (τ ) − τ 2

ε2

)
ψε,ψε

)
L2(�ε)

=
9
4λ1(0, ε) − λ1(0, ε)2 − 4τ 2

ε2

∥∥ ∂ψε

∂x1

∥∥2
L2(�ε)

9
4 − λ1(0, ε)

= λ1(0, ε) − 4τ 2

ε2
(

9
4 − λ1(0, ε)

) ∥∥∥∥∂ψε

∂x1

∥∥∥∥2

L2(�ε)

.

Hence, by lemma 5.1 and the asymptotics (5.2)

λ1(τ, ε) � λ1(0, ε) +
τ 2

ε2

(
1 − 16

9 − 4λ1(0, ε)

∥∥∥∥∂ψε

∂x1

∥∥∥∥2

L2(�ε)

)
� λ1(0, ε), τ ∈ [−ε, ε],

if ε is small enough. It proves the identity (2.5).
We proceed to the asymptotics for λ1(0, ε). We construct it first formally and then we

justify it. The formal constructing is based on the boundary layer method, and in fact it follows
the main ideas of [G1].

We construct the asymptotics for λ1(0, ε) as the series (2.6). The asymptotics for the
associated eigenfunction is constructed as

ψ̃ε(x) = � in
ε (x, η) + χ(x2)�

bl
ε (ξ, η),

� in
ε (x, η) = sin

√
λ1(0, ε)(π − x2),

where the cut-off function χ was defined before lemma 3.1, and the variables ξ were introduced
in (3.5). In contrast to ψε, the function ψ̃ε is not supposed to be normalized in L2(�ε).

The function �bl
ε is a boundary layer at �̊− and its asymptotics is sought as

�bl
ε (ξ, η) =

∞∑
i=1

εivi(ξ, η). (5.5)

The main aim of the formal constructing is to determine the numbers μi and the functions vi.
It is clear that

� in
ε (0, η) = sin

√
λ1(0, ε)π =

∞∑
i=1

εi
(
−π

2
μi + G

(D)
i (μ1, . . . , μi−1)

)
,

d� in
ε

dx2
(0, η) = −

√
λ1(0, ε) cos

√
λ1(0, ε)π

= 1 +
∞∑
i=1

εi
(μi

2
+ G

(N)
i (μ1, . . . , μi−1)

)
,

(5.6)
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where G
(D)
i , G

(N)
i are some polynomials, and, in particular,

G
(D)
1 = 0, G

(N)
1 = 0, G

(D)
2 (μ1) = π

8
μ2

1. (5.7)

The function ψ̃ε satisfies the boundary condition on γ̊ε and �̊ε, and by (5.5) and (5.6) it implies
the boundary conditions for vi :

∂v1

∂ξ2
= −1,

∂vi

∂ξ2
= −1

2
μi−1 − G

(N)
i−1(μ1, . . . , μi−2), ξ ∈ �̊(η), i � 2, (5.8)

vi = π

2
μi − G

(D)
i (μ1, . . . , μi−1), ξ ∈ γ̊ (η), i � 1,

γ̊η := ∂� ∩ γ (η), �̊(η) := ∂� ∩ �(η),
(5.9)

where, we recall, the sets γ (η) and �(η) were introduced in (3.7). The functions vi should
satisfy the periodic boundary conditions on the lateral boundaries of �, since the same is
assumed for ψε. And they should decay exponentially as ξ2 → +∞, since they are boundary
layer functions.

In order to obtain the equations for vi , we substitute the series (2.6), (5.5) into the equation

−��bl
ε = λ1(0, ε)�bl

ε , x ∈ �ε,

pass to the variables ξ , and equate the coefficients of the same powers of ε. It implies

−�ξvi =
i−3∑
j=0

μjvi−j−2, ξ ∈ �, (5.10)

where μ0 := 1. The functions v1, v2 are harmonic ones and we can find them explicitly:

v1 = X, v2 = μ1

2
X,

where, we recall, the function X was introduced in (3.5). It follows from (3.6) that

v1 = ln sin η, v2 = μ1

2
ln sin η, ξ ∈ γ̊ (η),

and by (5.7)–(5.9) we obtain
π

2
μ1 = ln sin η,

μ1

2
ln sin η = π

2
μ2 − π

8
μ2

1.

The identity obtained leads us directly to formulae (2.7).
The solvability condition of the problems (5.10), (5.8), (5.9) for i � 3 is given by

lemma 3.1 in [G1]:

π

(
π

2
μi − G

(D)
i −

(
1

2
μi−1 + G

(N)
i−1

)
ln sin η

)
=

i−3∑
j=0

μj

∫
�

Yvi−j−2 dξ,

Y = Y (ξ, η) := X(ξ, η) + ξ2 − ln sin η.

It implies the formulae for μi :

μi = 2

π

(
1

π

i−3∑
j=0

μj

∫
�

Yvi−j−2 dξ + G
(D)
i (μ1, . . . , μi−1)

+
(μi−1

2
+ G

(N)
i−1(μ1, . . . , μi−2)

)
ln sin η

)
. (5.11)

So, the problems (5.10), (5.8), (5.9) are solvable.
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By induction it follows from [Bo5, lemma 3.7] that∫ π
2

− π
2

vi(ξ, η) dξ1 = 0 for all ξ2 > 0.

It allows us to apply theorem 3.1 from [Bo5] to the problems (5.10), (5.8), (5.9). Similar in
fact was the core of the proof of lemma 4.2 in [Bo5], and repeating word by word the proof of
this lemma, we arrive at

Lemma 5.2. As η → +0, the identities (2.8) and the uniform in η estimates

‖ξp

2 vj‖L2(�) � C| ln η|j−1,

∥∥∥∥ξ
p+1
2 ∇ξ

∂vj

∂ξ2

∥∥∥∥
L2(�)

� C| ln η|j−1

∥∥∥∥ξm
2 ∇ξ

∂mvj

∂ξm
2

∥∥∥∥
L2(�)

� C| ln η|j− 1
2 , m = 0, 1,

hold true, where p � 0.

Employing this lemma and reproducing the proof of lemma 5.1 in [Bo5], one can prove
easily

Lemma 5.3. For any p � 2, R > 1 the uniform in R and η estimates

‖vj‖L2(�R) � CR−p+1(| ln η|j−1 + 1), ‖∇ξ vj‖L2(�R) � CR−p+1(| ln η|j−1 + 1),

hold true.

Given M � 2, denote

�(M)
ε := 1 +

M∑
i=1

εiμi(η), �̃(M)
ε (x) := sin

√
�

(M)
ε (π − x2) + χ(x2)

M∑
i=1

εivi(ξ, η).

Lemma 5.4. The function �̃(M)
ε ∈ W 1

2 (�ε) satisfies the periodic boundary condition on the
lateral boundaries of �ε and is a generalized solution to the problem:

−��̃(M)
ε = �(M)

ε �̃(M)
ε + f̃ (M)

ε in �ε, �̃(M)
ε = 0 on �̊+,

�̃(M)
ε = B

(M)
ε,D on γ̊ε,

∂�̃(M)
ε

∂x2
= B

(M)
ε,N on �̊ε,

where f̃ (M)
ε ∈ L2(�ε), B

(M)
ε,D , B

(M)
ε,N are constants. The uniform in ε and η estimates∥∥f̃ (M)

ε

∥∥
L2(�ε)

� CεM(| ln η|M−2 + 1),∣∣B(M)
ε,N

∣∣ � CεM(| ln η|M + 1),
∣∣B(M)

ε,D

∣∣ � CεM+1(| ln η|M+1 + 1),

hold true.

This lemma can be checked by direct calculations with employing lemma 5.3.
We let

�(M)
ε (x) := �̃(M)

ε (x) − χ(x2)
(
B

(M)
ε,D + x2B

(M)
ε,N

)
.

In view of lemma 5.4, this function belongs to the domain of H(p)
ε (0) and(

H(p)
ε (0) − �(M)

ε

)
�(M)

ε = f (M)
ε ,

∥∥f (M)
ε

∥∥
L2(�ε)

� CεM− 3
2 |(ln η|M−2 + 1). (5.12)

It is also easy to check that∥∥�(M)
ε

∥∥
L2(�ε)

= ε1/2

(
π√

2
+ O

(
ε(| ln η| + 1)

))
.
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Denote

�̂(M)
ε := �(M)

ε∥∥�
(M)
ε

∥∥
L2(�ε)

,

and by (5.12) and (4.4) we have

1

�
(M)
ε

�̂(M)
ε − (

H(p)
ε (0)

)−1
�̂(M)

ε = f̂ (M)
ε ,

∥∥f̂ (M)
ε

∥∥
L2(�ε)

� CεM−2|(ln η|M−2 + 1).

Since the operator
(
H(p)

ε (0)
)−1

is self-adjoint and compact, by [OSI, chapter III, section 1,

lemma 1.1] we conclude that there exists an eigenvalue λε of the operator H(p)
ε (0) such that∣∣∣∣ 1

�
(M)
ε

− 1

λε

∣∣∣∣ � CεM−2(| ln η|M−2 + 1).

In view of the asymptotics (5.2), the only eigenvalue of H(p)
ε (0) which satisfies this inequality

is λ1(0, ε) and λε = λ1(0, ε). Hence,∣∣�(M)
ε − λε

∣∣ � CεM−2(| ln η|M−2 + 1),

and the asymptotics (2.6) is proven.
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